

Executive Summary

This assessment characterizes the probability of a viable aquatic pathway being able to form at the Hatley-Plover location along the Great Lakes and Mississippi River Basin watershed divide. The Hatley-Plover location extends from the Plover River in Hatley, Wisconsin within the Mississippi River Basin eastward approximately four miles (6.4 kilometers) through a flood-prone wetland area to Norrie Brook within the Great Lakes Basin. The western part of this pathway is a wetland area along part of the Mountain-Bay State Trail, which is an old railroad grade. During a site visit, surface water was found along the western end of this trail in the Mississippi River Basin. However, no continuous surface water connection was observed as far eastward as the basin divide or across it. No channel or clear flow path was found or determined likely to form from flooding events more frequent than the one percent annual recurrence interval event. However, there is a degree of uncertainty with this in that there was no site-specific data available that would allow precipitation amounts to be correlated to surface flow behavior. Based on observed site conditions of the potential pathway area and relevant and available information about local hydrology, it is unlikely that a surface water connection exists at this site between the Great Lakes and the Mississippi River Basins except possibly from a flood event somewhere in excess (larger) than the one percent annual recurrence interval. A rating of "low" was therefore assigned to this site to characterize the probability of an aquatic pathway being able to form between the basins.

Table of Contents

1 Introduction	1
1.1 Study Purpose	1
1.2 Summary of 2010 Preliminary Risk Characterization for Hatley-Plover, Wisconsin	3
1.3 Aquatic Pathway Team	4
2 Study Methodology	4
2.1 Coordination	4
2.2 Identification of Potential Pathways	5
2.3 Aquatic Nuisance Species of Concern	5
2.3.1 Lists of Non-indigenous Species in Great Lakes and Mississippi River Basins	6
2.3.2 List of ANS of Concern for GLMRIS	6
2.4 Pathway Assessment Process	8
3 Aquatic Pathway Characterization	11
3.1 Location	11
3.2 Climate	11
3.3 Location Specific Surface Water Features	14
3.4 Groundwater	16
3.5 Aquatic Pathway Temporal Characteristics	16
3.6 Probability Aqutaic Pathway Exists	19
4 Overall Aquatic Pathway Viability	20
5 Conclusions	20
6 References	21
Appendix A - Evaluation Form for Hatley-Plover	
List of Tables	
Table 1: ANS of Concern for GLMRIS	
Table 2: Climate Information	
Table 3: Overall Pathway Viability for ANS Spreading between Mississippi River and Great Lakes Basins	20
L'alac C E'anna	
List of Figures	
Figure 1: Potential Aquatic Pathway Locations	
Figure 2: Diagram of the GLMRIS Focus Area 2 Aquatic Pathway Assessment Model	
Figure 3: Location of Hatley-Plover Potential Pathway	
Figure 4: Hatley-Plover Potential Pathway Vicinity Map	
Figure 5: Typical Cross-Sections based on USGS 10m DEM	
Figure 6: View of Meadow on South Side of Railroad Grade Near Mountain-Bay State Trail	
Figure 7: Bridge Number 3	
Figure 8: NRCS Web Soil Survey Ponding Frequency Class	18

Acronyms

ANS.... Aquatic Nuisance Species

ANSTF.... Aquatic Nuisance Species Task Force

CAWS Chicago Area Waterway System CEQ. Council on Environmental Quality

CMP..... Corrugated Metal Pipe DEM..... Digital Elevation Model

FEMA. Federal Emergency Management Agency

GIS Geographic Information System GLFC Great Lakes Fishery Commission

GLMRIS. . . Great Lakes and Mississippi River Interbasin Study

HUC..... Hyrdologic Unit Codes

INDNR.... Indiana Department of Natural Resources MNDNR... Minnesota Department of Natural Resources

NAS..... Nonindigenous Aquatic Species
NCDC.... National Climatic Data Center
NEPA.... National Environmental Policy Act

NOAA. National Oceanic and Atmospheric Administration

NRCS Natural Resources Conservation Service

RCP..... Reinforced Concrete Pipe USACE ... U.S. Army Corps of Engineers USFWS ... U.S. Fish and Wildlife Service

USGS U.S. Geological Survey

WRDA Water Resources Development Act

1 Introduction

The Great Lakes and Mississippi River Interbasin Study (GLMRIS) was authorized in Section 3061(d) of the Water Resources Development Act of 2007, and therein, it prescribes the following authority to the Secretary of the Army and the U.S. Army Corps of Engineers (USACE) (WRDA, 2007):

"(d) FEASIBILITY STUDY. - The Secretary, in consultation with appropriate Federal, State, local, and nongovernmental entities, shall conduct, at Federal expense, a feasibility study of the range of options and technologies available to prevent the spread of aquatic nuisance species between the Great Lakes and Mississippi River Basins through the Chicago Sanitary and Ship Canal and other aquatic pathways."

This GLMRIS Focus Area 2 Aquatic Pathway Assessment report addresses the Hatley-Plover location, in Marathon County, Wisconsin. This location is one of 18 locations identified in the Great Lakes and Mississippi River Interbasin Study Other Pathways Preliminary Risk Characterization (USACE, 2010) as a potential aquatic pathway spanning the watershed divide between the Great Lakes and Mississippi River Basins outside of the Chicago Area Waterway System (CAWS). This report is downloadable from the GLMRIS web site (glmris.anl.gov/).

The dashed line in Figure 1 depicts the nearly 1,500-mile (2,414 kilometer) basin divide from the New York -Pennsylvania state line to north eastern Minnesota, and it depicts each of the 18 potential aquatic pathway locations previously identified. The Hatley-Plover, Wisconsin location is shown as location number 14 on Figure 1.

The GLMRIS is a very large and complicated task involving multiple USACE Districts and Divisions. Program Management of the study is conducted by the Great Lakes and Ohio River Division. The study considers all aquatic nuisance species (ANS) of concern, however, the proximity of Asian carp in the Mississippi River Basin to the basin divide near two locations lends a sense of urgency and national significance to

completion of the GLMRIS. These two locations are the Chicago Area Waterway System (CAWS) in Chicago, Illinois and Eagle Marsh in Fort Wayne, Indiana. To help accelerate completion of the feasibility study, the Great Lakes and Ohio River Division split management of the GLMRIS into two separate focus areas. Focus Area 1 is managed by the USACE, Chicago District and addresses the CAWS. Focus Area 2 is managed by the USACE, Buffalo District and evaluates all other potential aquatic pathways that exist or are likely to form across the basin divide separating runoff that flows into the Mississippi River and its tributaries from runoff that flows into the Great Lakes and its tributaries.

1.1 Study Purpose

The preliminary report from 2010 and the subsequent analysis contained in this report have been produced for a broad audience ranging from the scientific community to the general public, and are specifically intended to identify any locations where an aquatic pathway exists or may form between the basins, and to evaluate the probability that specific ANS would be able to arrive at that pathway and cross into the new basin. The information in this and the other Focus Area 2 reports are intended to provide a sound scientific basis for helping to prioritize future funding of GLMRIS and/or other actions at these potential aquatic pathway locations.

This report is part of a tiered approach to assess the likelihood of ANS spreading between the Great Lakes and Mississippi River Basins via aquatic pathways, and it was prepared in accordance with the detailed procedures and criteria specified in the GLMRIS Focus Area 2 Study Plan (USACE, 2011a). The primary purpose of this report is to present the evidence and explain the procedures used to qualitatively estimate the likelihood that a viable aquatic pathway exists at the Hatley-Plover, Wisconsin location that will enable the interbasin spread of ANS. It is also intended to meet the four objectives identified in the USACE 2011 plan for any sites ultimately rated as medium or high for probability of a pathway existing:

 A definitive determination of whether the Hatley-Plover, Wisconsin location should be included in the inventory of locations where a viable

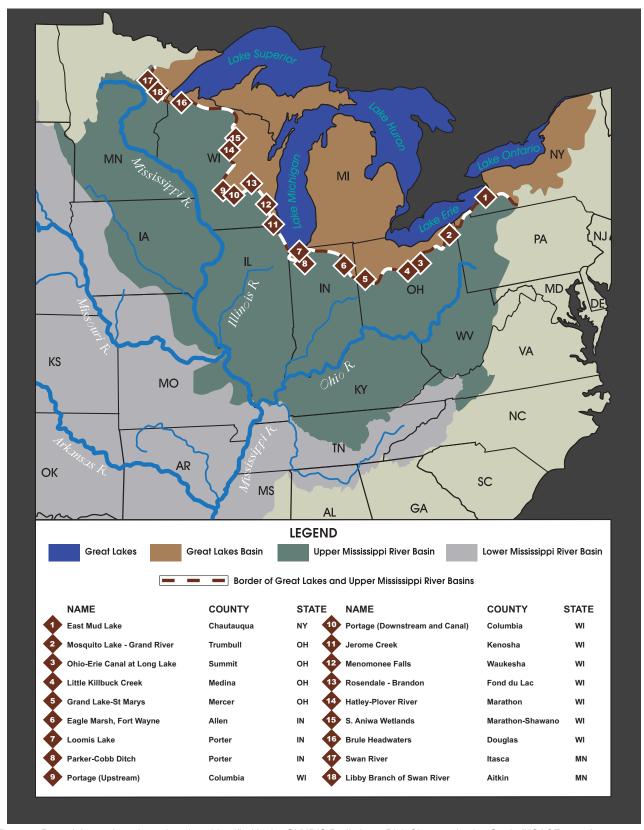


Figure 1. Potential aquatic pathway locations identified in the GLMRIS Preliminary Risk Characterization Study (USACE, 2010).

surface water connection between headwater streams on both sides of the drainage divide exists or is likely to form between the Great Lakes and Mississippi River Basins;

- A standalone report that characterizes the probability that a viable aquatic pathway exists at Hatley-Plover, Wisconsin and will enable the interbasin spread of ANS;
- Development of clear problem statements that frame the means, constraints, and likelihood of the interbasin spread of ANS via the potential aquatic pathway at Hatley-Plover, Wisconsin; and
- Development of clear opportunity statements that illustrate how the collective authorities, resources, and capabilities of USACE and other applicable Federal, State, local, and nongovernmental stakeholder organizations may best be coordinated and applied to prevent the interbasin spread of ANS through the Hatley-Plover, Wisconsin location.

1.2 Summary of 2010 Prel iminary Risk Characterization for Hatley-Plover, Wisconsin

The Great Lakes and Mississippi River Interbasin Study Other Pathways Preliminary Risk Characterization was designed as the first step of a tiered approach to rapidly conduct a study intended to accomplish two objectives (USACE, 2010). The first and primary objective was to determine if there were any locations within the GLMRIS, aside from the CAWS, where a near term risk for the interbasin spread of ANS exists. Near term, in this case, indicates that implementation of some measure(s) might be warranted to reduce the potential for ANS transfer at that particular location in the short term versus setting that site aside for further analysis. The second objective was to refine the scope of the other aquatic pathways portion of the GLMRIS by developing a list of potential aquatic pathways that could form anywhere along the divide separating the Great Lakes and Mississippi River Basins, and help provide a basis for prioritizing future feasibility study efforts based upon relative risk.

The USACE solicited the input and collaborated with the U.S. Geological Survey (USGS), U.S. Fish and Wildlife Service (USFWS), National Oceanic and Atmospheric Administration (NOAA), Great Lakes Fishery Commission (GLFC) and the natural resource agencies in the states of Minnesota, Wisconsin, Indiana, Ohio, Pennsylvania, and New York. A total of 36 potential locations were initially identified along the divide where it appeared that interbasin flow could occur. These were locations situated in a mixture of rural, forested, suburban, and urban areas, and included locations where surface water flow patterns have been modified through the building of navigation canals, excavation of ditches, and construction of sewers to facilitate storm water management for agricultural, flood damage reduction, or other water management purposes. Also, many of the potential aquatic pathways identified in 2010 were locations where extensive natural wetlands exist in close proximity to, and in some instances appear to span, the basin divide. The lack of prior hydrologic studies and the level of uncertainty in the hydrology information led to a conservative approach in estimating the individual aquatic pathway risk ratings.

At 18 of these locations the interagency group determined that it would likely require an epic storm and flooding event for an aquatic pathway to ever form across the basin divide. These were not recommended for further investigation because this was considered a tolerably low level of risk. However, at the remaining 18 locations the group did recommend that a more detailed assessment be conducted (Figure 1). Only one location, Eagle Marsh in Fort Wayne, Indiana, was determined to pose a near term risk for the potential spread of Asian carp into the Great Lakes Basin, and this led to the installation of a temporary barrier by Indiana Department of Natural Resources (INDNR) until a more complete assessment and remedy could be implemented.

The Hatley-Plover site was characterized in 2010 as a rural wetland area in the headwaters of the Plover and Embarrass Rivers where an overlap of the mapped flood hazard area was found across the Great Lakes and

Mississippi River Basin divide. This overlap indicated at that time that a surface water connection might be possible at a one percent annual recurrence interval storm event. A recurrence interval relates any given storm, through statistical analysis, to the historical records of rainfall and runoff for a given area. The recurrence interval is based on the statistical probability that a given intensity storm event will be equaled or exceeded in any given year. For instance, a one percent annual recurrence interval storm is a rainfall event that has a one percent probability, one chance in 100, of being equaled or exceeded in any given year. This level of storm event was commonly referred to as a 100-year storm event, but this term has led people to incorrectly conclude that a 100-year storm event is one that only occurs once in any given 100 year period. A ten percent annual recurrence interval storm (formerly referred to as a ten year event) is a smaller event that has a one in ten chance of being exceeded during any given year, and a 0.2 percent annual recurrence interval storm (formerly referred to as a 500-year event) is a larger event that has a one in 500 chance of being exceeded in any given year.

Although the preliminary risk characterization did not identify the Hatley-Plover pathway as a location where there is a near term risk for the interbasin spread of ANS, there was some uncertainty regarding whether or not an aquatic pathway could form between the basins. The preliminary effort therefore recommended that a more detailed assessment be conducted at this location. This was subsequently done in collaboration with the USGS, NRCS, Wisconsin Department of Natural Resources (WDNR), and other government agencies. The following actions were taken:

- Federal, state, and local stakeholders (e.g. USGS Water Science, WDNR Division of Water, County Surveyor, and local NRCS representatives) were briefed on the preliminary risk characterization results. A detailed site visit to observe potential connection locations was conducted, and the available topographic mapping and flood hazard information was compiled and reviewed.
- The dams on the connecting streams to the Great Lakes and Mississippi River were evaluated relative to the potential for ANS passage through, around, or over each in-stream structure in both directions.

1.3 Aquatic Pathway

Due to the large amount of unknowns and natural variability associated with the hydrology and the biology of such a large geographic area, the Study Plan specified formation of a "team of teams," combining the best available Federal, State, local, and national hydrologists and biologists to assess conditions at each potential aquatic pathway (USACE, 2011a). The results of this assessment reflect the collective experience, expertise, and focused effort of these experts from USACE, NRCS, USGS, and WDNR. The results also reflect the guidance, input, review comments, and concurrence of the multi-organization Agency Technical Review which was comprised of experts from USACE and Illinois Department of Natural Resources.

2 Study Methodol ogy

The GLMRIS risk analysis process is an adaptation of the generic model and process described in the Generic Nonindigenous Aquatic Organisms Risk Analysis Review Process (For Estimating Risk Associated with the Introduction of Nonindigenous Aquatic Organisms and How to Manage for that Risk) (ANSTF, 1996). The Aquatic Nuisance Species Task Force (ANSTF) defines the first step in this process as identification of interested parties and solicitation of input.

2.1 Coordination

The USACE identified interested parties and solicited input early in the process for Focus Area 2 and has included individual visits and discussions with the state agencies responsible for water resources, and fish and wildlife management in the eight states bordering the Great Lakes. The process used for the Focus Area 2 assessments has also been discussed in meetings with representatives of the Council on Environmental Quality (CEQ), USGS, USFWS, NOAA, NRCS, and Great Lakes

Fishery Commission (GLFC). Development of this plan also included input from the public and interested nongovernmental organizations received during formal National Environmental Policy Act (NEPA) public scoping meetings which were held at 12 locations across the region in both basins between December 2010 and March 2011. The USACE requested the support and participation of the best available experts from the State and Federal agencies responsible for water resources, and fish and wildlife management in the states along the Great Lakes and Mississippi River Basin divide to address the critically important issue of preventing interbasin transfer of ANS. The USGS, NRCS, and each state DNR assigned personnel to assist each USACE pathway assessment team. In addition, a technical review team comprised of 16 senior level experts from the USACE and external partner agencies, including NOAA and the GLFC, was assembled to review and guide the work of these teams. Overall, extensive collaboration among partner agencies, the review team, and other subject matter experts has led to detailed Focus Area 2 pathway assessments.

2.2 Identification of Potential Pathways

At 18 of the potential aquatic pathways identified during the 2010 Preliminary Risk Characterization, it was determined it would likely require an epic storm and flooding event (i.e., greater than a one percent annual recurrence interval storm event) for an aquatic pathway to ever form across the basin divide. These locations were not recommended for further investigation because areas that might require a flooding event in excess (greater magnitude, less frequency) of the one percent annual recurrence interval flood are less likely, and therefore present a tolerably low level of risk. This one percent threshold criterion was established through collaboration with the USGS, USFWS, NRCS, GLFC, and the departments of natural resources in the states of MI, MN, WI, IL, IN, OH, PA, and NY. This threshold is also widely used in flood risk management and is typically aligned with most readily available hydrologic information. The one percent annual recurrence interval threshold only indicates at what level event an aquatic connection can begin to form and would indicate a location that should then be subjected to a more labor intensive evaluation of the probability of ANS being able to utilize that pathway. At the remaining 18 locations, it was recommended that a more detailed assessment be conducted (Figure 1). This was subsequently done in 2011-2012 in collaboration with USGS, NRCS, USFWS, state natural resource agencies, and county surveyors (where applicable), and the results for the Hatley-Plover Wetlands location are presented in this report. Although the focus of this assessment is on aquatic pathways, it should also be mentioned that there are other non-aquatic pathways (e.g., anthropogenic, movement by animals) that may enable ANS to transit across the aquatic pathway or across the basin divide but that are not included within this report.

2.3 Aquatic Nuisance Species of Concern

This report addresses the problem of ANS invading, via surface-water pathways, the Great Lakes Basin from the Mississippi River Basin and vice versa. ANS is defined by the ANSTF as "... nonindigenous species that threaten the diversity or abundance of native species or the ecological stability of infested waters, or commercial, agricultural, aquacultural or recreational activities dependent on such waters." The USGS Nonindigenous Aquatic Species (NAS) information resource http:// nas.er.usgs.gov/about/fag.aspx defines ANS as "...a species that enters a body of water or aquatic ecosystem outside of its historic or native range." (USGS, 2012). Adjectives such as nonindigenous, nuisance, invasive, alien, and exotic are commonly used interchangeably in the biological literature to describe undesirable species. Based on discussions between the USACE, USGS, and the USFWS the following definitions were established for the purposes of the GLMRIS. All nonindigenous aquatic species (per the USGS definition above), that are present in the Great Lakes but not known to be present in the Mississippi River and its tributaries are defined as ANS of concern for GLMRIS. Likewise, all nonindigenous aquatic species present in the Mississippi River or its tributaries but not known to be present in the Great Lakes are also considered as ANS of concern for the GLMRIS. Therefore, the term ANS is synonymous with the term nonindigenous aquatic species in this report.

2.3.1 Lists of Nonindigenous Species in Great Lakes and Mississippi River Basins

The list of ANS of concern for a particular location was developed by first consulting the USACE white paper titled, Non-Native Species of Concern and Dispersal Risk for the Great Lakes and Mississippi River Interbasin Study released in September 2011 (USACE, 2011b). This technical paper, prepared by a multi-disciplinary USACE natural r?esources team, took a broad look at the potential range of species that could be of concern to the GLMRIS. The paper is Appendix C of the GLMRIS Focus Area 2 Study Plan and it is an integral component of the plan. This USACE white paper included a review of 254 aquatic species that are either nonindigenous to either basin or native species that occur in one basin or the other. The list of 254 aquatic species were iteratively screened to identify all potential ANS that could be of concern in either basin and to systematically focus the study toward those species judged to pose the highest potential risk of ecological impacts if they became established in the other basin.

In the first screening iteration, 119 of the 254 aquatic species reviewed were determined to pose a potential threat of infiltrating the other basin and were carried into the second iteration of the analysis. The other 135 species were rejected for further analysis for several reasons. Initially, 104 species were dropped from further consideration because they were determined to already be established in both basins. Another 31 species were removed from further analysis because they were not yet located in either basin, could bypass any aquatic control mechanism by terrestrial movement, or had no potential to cause adverse affects to the invaded ecosystem.

2.3.2 List of ANS of Concern for GLMRIS

To determine species of concern that are pertinent for the GLMRIS from the list of 119 species, the USACE natural resources team compiled, reviewed, and analyzed the

best available information. Literature reviews, species proximity to aquatic interbasin connections (in particular the CAWS), ecological tolerances and needs, and vagility of the species were all included in the analysis. The team ranked each species as high, medium, or low risk according to these parameters. The result was the establishment of a list of 39 species, each identified as having both a high level of potential risk for both transferring from one basin to another, and potentially a high risk in that if they do disperse, and the invaded ecosystem could be moderately to severely affected by their colonization (Table 1). A fact sheet was developed for each of these species of concern detailing morphological characteristics useful for identification, including color photographs of the species, information on their ecology, habitats, and distributions and dispersal status.

No assessment of specific ANS was completed, it was determined that there was a low likelihood of an aquatic pathway existing at up to a one percent recurrence interval frequency storm event.

Taxon	Scientific Name	Common Name	Basin	Interbasin Dispersal Mechanism
fish	Alosa aestivalis	blueback herring	GL	swimmer
fish	Alosa chrysochloris	skipjack herring	MS	swimmer
fish	Alosa psuedoharengus	alewife	GL	swimmer
crustacean	Apocorophium lacustre	a scud	MS	ballast water
algae	Bangia atropupurea	red macro-algae	GL	ballast / recreational boating
annelid	Branchuris sowerbyi	tubificid worm	GL	sediment transport
crustacean	Bythotrephes longimanus	spiny waterflea	GL	ballast water/sediment transport
plant	Carex acutiformis	swamp sedge	GL	recreational boating & trailers
crustacean	Cercopagis pengoi	fish-hook water flea	GL	ballast / recreational boating
fish	Channa argus	northern snakehead	MS	swimmer
algae	Cyclotella cryptica	cryptic algae	GL	unknown / any water
algae	Cyclotella pseudostelligera	cylindrical algae	GL	unknown / any water
crustacean	Daphnia galeata galeata	water flea	GL	ballast water
crustacean	Echinogammarus ischnus	a European amphipod	GL	ballast water
algae	Enteromorpha flexuosa	grass kelp	GL	ballast / recreational boating
fish	Gasterosteus aculeatus	threespine stickleback	GL	swimmer
plant	Glyceria maxima	reed sweetgrass	GL	recreational boating & trailers
fish	Gymnochephalus cernua	Ruffe	GL	swimmer
crustacean	Hemimysis anomala	bloody red shrimp	GL	ballast water
fish	Hypophthalmichthys molitrix	silver carp	MS	swimmer
fish	Hypophthalmichthys nobilis	bighead carp	MS	swimmer
plant	Landoltia (Spirodela) punctata	dotted duckweed	MS	recreational boating & trailers
bryozoan	Lophopodella carteri	bryozoans	GL	with aquatic plants
fish	Menidia beryllina	inland silverside	MS	swimmer
plant	Murdannia keisak	marsh dewflower	MS	recreational boating & trailers
fish	Mylopharyngodon piceus	black carp	MS	swimmer
crustacean	Neoergasilus japonicus	a parasitic copepod	GL	parasite to fish
plant	Oxycaryum cubense	Cuban bulrush	MS	recreational boating & trailers
fish	Petromyzon marinus	sea lamprey	GL	swimmer
mollusk	Pisidium amnicum	greater European pea clam	GL	ballast water
fish	Proterorhinus semilunaris	tubenose goby	GL	swimmer
protozoan	Psammonobiotus communis	testate amoeba	GL	ballast water
protozoan	Psammonobiotus dziwnowi	testate amoeba	GL	ballast water
protozoan	Psammonobiotus linearis	testate amoeba	GL	ballast water
crustacean	Schizopera borutzkyi	parasitic copepod	GL	ballast water
mollusk	Sphaerium corneum	European fingernail clam	GL	ballast water
algae	Stephanodiscus binderanus	diatom	GL	ballast water
plant	Trapa natans	water chestnut	GL	recreational boating & trailers
mollusk	Valvata piscinalis	European stream valvata	GL	ships

2.4 Pathway Assessment Process

The GLMRIS risk analysis process is an adaptation of the generic model and process described in the Generic Nonindigenous Aquatic Organisms Risk Analysis Review Process (For Estimating Risk Associated with the Introduction of Nonindigenous Aquatic Organisms and How to Manage for that Risk) (ANSTF, 1996). ANSTF defines the risk associated with an ANS as:

Equation 1

R Establishment = P Establishment x C Establishment

Where:

R Establishment = Risk of Establishment

P Establishment = Probability of Establishment

C _{Establishment} = Consequence of Establishment

Note the risk is defined as a multiplicative function. That means, if either of these components is zero or low, the overall risk will also be zero or low. In order to work most efficiently given the large number of potential pathways, the GLMRIS Other Aquatic Pathways Team (Focus Area 2) concentrated its effort on characterizing the probability of establishment, while the GLMRIS Focus Area 1 Team for the CAWS is focusing on both components. An estimate of the consequences of any ANS establishment from the Focus Area 2 aquatic pathways will be deferred until possible future study by USACE or others.

ANSTF divides the probability of establishment component shown in Equation 1 into four basic elements which describe the basic events that must occur for an ANS to establish in the new environment:

Equation 2

 $P_{Establishment} = [P_1 \times P_2 \times P_3 \times P_4]$

Where:

P₁ = P ANS associated with pathway

P₂ = P ANS survives transit

P₃ = P ANS colonizes in new environment

P₄ = P ANS spreads beyond colonized area

Each of the four elements of Equation 2 is qualitatively rated as High (H), Medium (M), or Low (L) based on the available evidence. They are also qualitatively assigned a level of certainty (Very Certain, Reasonably Certain, Moderately Certain, Reasonably Uncertain, Very Uncertain). The overall probability rating is the rating of the element with the lowest probability. Thus, in a quartet of HLHH the overall probability rating is L. The multiplicative nature of the function assures this is actually a somewhat conservative estimate. With actual numbers the overall probability would always be smaller than the smallest of the four factors. These elements have been modified for use in GLMRIS (Equation 3) to describe the basic sequence of events that must occur for an ANS to successfully cross the basin divide through an aquatic pathway and establish in the new basin:

Equation 3 [FA1 Model]

 $P_{Establishment} = [P_0 \times P_1 \times P_2 \times P_3 \times P_4]$

Where:

 $P_0 = P_{Pathway \ exists}$

P₁ = P ANS has access to pathway

 $P_2 = P_{ANS\ transits\ pathway}$

P₃ = P ANS colonizes in new waterway

P₄ = P ANS spreads in new waterway

This model works well in areas where a viable pathway is already known to exist, such as the CAWS. However, for many of the 18 locations identified in GLMRIS Focus Area 2, it was uncertain at the outset whether or not an aquatic pathway does in fact ever form. The team recognized that formation of a pathway at these locations would likely be infrequent, and with a limited duration and magnitude (width, depth, and rate of surface water flow across the basin divide). Consequently, the model in Equation 3 was modified further for Focus Area 2.

Greater efficiency in analysis can be gained by modifying Equation 3 by eliminating evaluation of the last two elements because if a pathway does not exist there is no reason to collect data on colonization (P_3) and spread (P_4) in the new basin. In addition, the third element of Equation 3, ANS transits pathway (P_2), is broken down into its own sequence of necessary events to characterize in greater detail those variables

being evaluated to determine whether or not a viable pathway exists. In setting aside the last two elements in Equation 3 (P_3 and P_4), no attempt is therefore made in this report to assess the probability that an ANS will colonize in or spread through the receiving waterway or basin. USACE or others may assess the last two elements of Equation 3 in the future when evaluating specific measures that could be taken to eliminate the probability of transfer at certain aquatic pathways.

Once again, in order to work efficiently in assessing ANS risk for Focus Area 2, the initial assessment focuses narrowly on the question of whether or not a viable aquatic pathway exists. Equation 4 shows how the third element of Equation 3 has been broken down to provide greater resolution for evaluating the pathway itself:

Equation 4 [Modification of Equation 3 – P2 Element] $P_2 = [P_{2a} \times P_{2b} \times P_{2c}]$

Where:

P₂ = P ANS transits pathway

P_{2a} = P ANS surviving transit to aquatic pathway

P_{2b} = P ANS establishing in proximity to the aquatic pathway

P_{2c} = P _{ANS} spreading across aquatic pathway into new basin

Delaying consideration of the last two elements of Equation 3 and substituting the more detailed consideration of the third element as expressed in Equation 4 yields the following model used in the GLMRIS Focus Area 2 assessments:

Equation 5 [FA2 Modified]

 $P_{Viable\ pathway} = [P_0 \times P_{1'} \times P_{2a} \times P_{2b} \times P_{2c}]$

Where:

P₀ = P_{Pathway exists}

 $P_{1'} = P_{ANS \ occurring \ within \ either \ basin}$

P_{2a} = P ANS surviving transit to aquatic pathway

P_{2b} = P ANS establishing in proximity to the aquatic pathway

P_{2c} = P _{ANS} spreading across aquatic pathway into new basin

Notice the overall probability is now the "probability a viable pathway exists" (P_{Variable Pathway}) and is no longer the original "probability of establishment" from Equation 3. The probability of establishment for certain aquatic pathways may be assessed in future studies by

USACE or others, but likely only for those pathways with an unacceptable rating for the "probability of a viable pathway" existing. Note also that (P_1), ANS has access to pathway from Equation 3 has been renamed (P_1), ANS occurring within either basin". This did not change the element being evaluated but made it clearer to team members what "access to the pathway" actually meant.

This model remains consistent with the overall GLMRIS risk assessment approach and the ANSTF methodology, and the refinements enabled the assessors to focus more appropriately on the relevant evidence. At those locations along the basin divide where the first element in Equation 5 (i.e., likelihood that an aquatic pathway exists up to a one percent annual recurrence interval event) was estimated to be low, no further assessment of that location was necessary. The low rating of this initial element assures that the overall probability of a viable pathway existing (Equation 5), the overall probability of establishment (Equation 3), and the ANS risk potential (Equation 1), will all be low because of the multiplicative nature of the model. This approach assured a more prudent use of public resources in data collection and assessment by minimizing the collection of unnecessary data, and the conduct of unnecessary analyses. At those locations where the probability of a pathway existing (P₀) was determined to be medium or high, the remaining four elements in Equation 5 were evaluated for each ANS of concern specific to that particular location over a 50 year period of analysis.

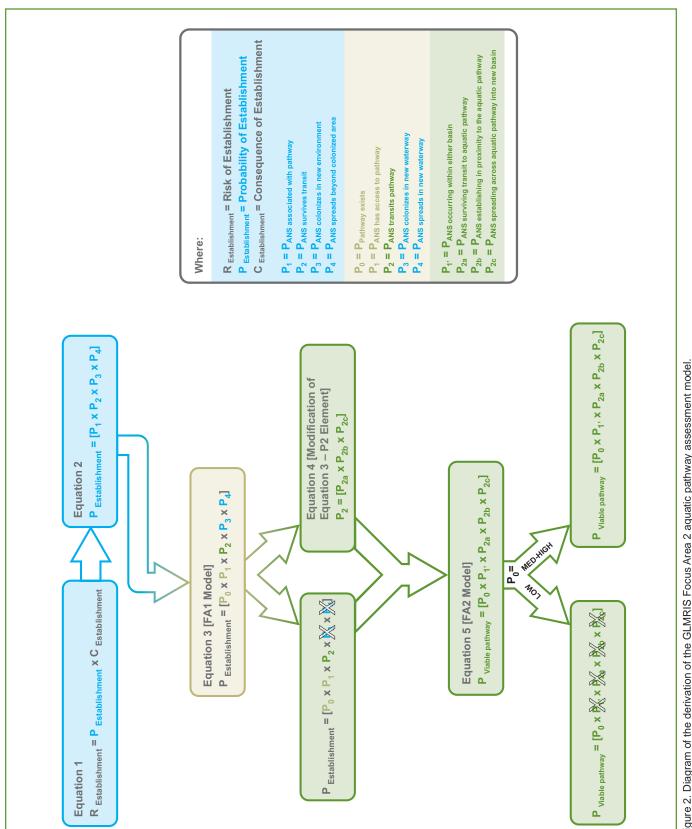


Figure 2. Diagram of the derivation of the GLMRIS Focus Area 2 aquatic pathway assessment model.

3 Aquatic Pathway Characterization

This section describes and illustrates the topography and features in the vicinity of the potential pathway and is intended to present the compilation of the readily available and applicable information for this area as it may influence local hydrology. Maps, photographs, and figures are included to aid understanding of the significant hydrologic and hydraulic conditions at and in proximity to the drainage divide. Also, this section identifies any significant data gaps and uncertainties related to the available topographic information and hydrologic modeling in the area of interest.

3.1 Location

The Hatley-Plover potential pathway extends from the Plover River in Hatley, Wisconsin (44°53'8.77"N, 89°20'37.26"W), eastward along the Mountain-Bay State Trail for approximately four miles (6.4 km) before reaching Norrie Brook (44°53'25.00"N, 89°15'29.10"W) within the Great Lakes Basin (Figure 3 and Figure 4).

3.2 Cl imate

Climate is looked at in this section just in terms of identifying any applicable elements of climate (e.g. temperature, rainfall) and how they may influence the likelihood of an aquatic connection forming at the subject pathway that could be utilized by ANS to spread between

basins. This area of eastern Wisconsin is classified as "continental" with large seasonal temperature variance, four distinct seasons, and relatively small or moderate precipitation. Temperatures in winter typically range from 9°F to 27°F (-12.7°C to -2.8°C), while summers are usually around 60° F to 70°F (15.5°C to 21°C). Normal annual precipitation is about 30 inches (76 cm) and the normal snowfall is around 60 inches (152 cm). See Table 2 for National Climatic Data Center (NCDC) data, from 1971-2000.

The highest precipitation accumulation occurs in the summer months, primarily during June and July. Although rainfall amounts do not always conform to averages, they are suggestive that substantial precipitation does not occur frequently. Furthermore, a much greater amount of precipitation would be necessary to cause a surface water connection at this location, although this is an area of uncertainty due to a lack of specific data linking precipitation amounts to the behavior of surface hydrology at the pathway location. In addition, given that annual temperatures reach down to or below the freezing mark on an annual basis, purely climatic conditions will restrict the time during which any ANS dispersal might occur by natural vectors.

Table 2 - Climate Information for Hatley-Plover potential pathway. National Climatic Data Center (NCDC)
data from 1971-2000 (Source: Midwestern Regional Climate Center-Station Wausau FAA	
Airport, WI).	

Element	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANN
Mean Temperature°F	13.0	19.0	30.2	44.0	56.8	65.5	70.1	67.9	58.6	47.0	32.4	18.7	43.6
Mean Temperature °C	-10.5	-7.2	-1	6.6	13.7	18.6	21.2	19.9	14.7	8.3	0.2	-7.4	6.4
Normal Precip (in)	1.09	0.90	1.92	2.84	3.54	4.18	4.12	4.53	4.08	2.63	2.20	1.33	33.36
Normal Precip (cm)	2.7	2.3	4.8	7.2	8.9	10.6	10.4	11.5	10.3	6.7	5.6	3.4	84.7
Mean Snow (in)	13.8	8.9	10.8	3.8	0.1	0.0	0.0	0.0	0.0	1.0	7.1	13.6	59.1
Mean Snow (cm)	35	22.6	27.4	9.7	0.3	0	0	0	0	2.5	18	34.5	150

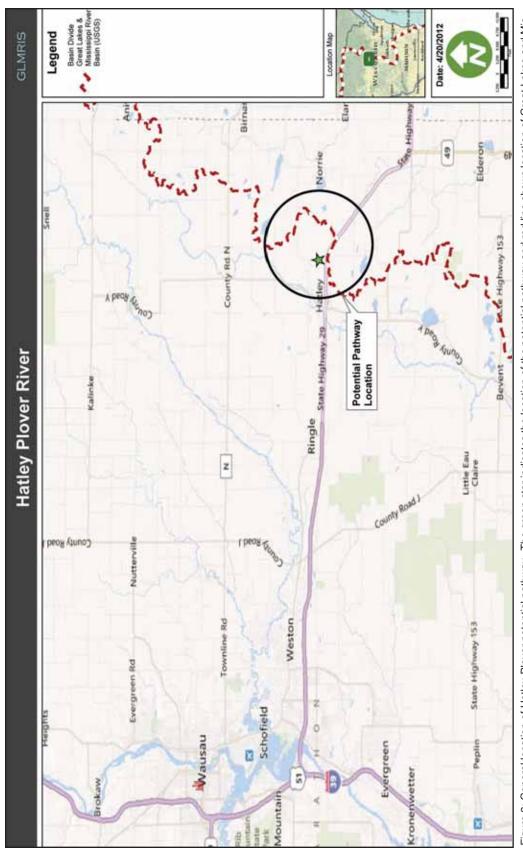


Figure 3: General location of Hatley-Plover potential pathway. The green star indicates the location of the potential pathway and red line shows location of Great Lakes and Mississippi River Basin divide. Background imagery courtesy of Bing Maps.

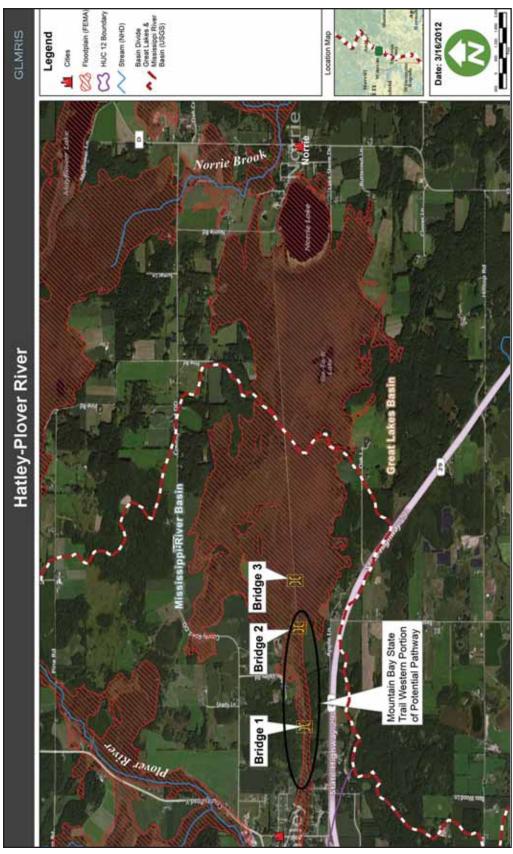


Figure 4: Hatley-Plover potential pathway. Purple lines are HUC-12 boundaries. Red shaded areas are FEMA Q3 One Percent Base Flood areas and blue lines are streams. Bridges along the Mountain-Bay State Trail are indicated by a yellow bridge symbols. Base Imagery from Bing Maps.

3.3 Location Specific Surface Water Features

The information contained in this section is meant to present and interpret the readily available information for this location as it pertains to surface water conditions and any aspects that may influence the behavior of surface water. The red-white line shown in Figure 4. is the Hydrologic Unit Code 12 (HUC) boundary, separating the Mississippi River Basin to the west from Great Lakes Basin to the east. The red shading is the Federal Emergency Management Agency (FEMA) Q3 Base Flood extent map for the one percent annual recurrence interva storm event. This base flood mapping indicates that there is the potential for a connection along both sides of the former railroad grade that now forms the Mountain-Bay State Trail. The FEMA mapping is based on the 1973 USGS Flood-Prone Areas map (Hatley Quad) since no modeling has been done for this area. However, there is a discrepancy between the two FEMA overlays that are available in Google Earth. The "Older (Q3) Base Flood Layer" shows a one half-mile (0.87 km) gap between the flood-prone areas, roughly centered on the point indicated in Figure 4. The "Local Flood Hazard Overlay" does not show this gap. It is unclear why there is a difference, since no work has been done on flood mapping for this site since 1973.

The flow path from this divide location to the Mississippi River is from the Plover River to the Wisconsin River and then into the Mississippi River. The flow path from the divide location to the Great Lakes Basin is through part of the basin divide wetland that drains to Norrie Brook, which then flows into the South Branch Embarrass River, which then joins the Embarrass River to the Wolf River and Lake Poygan, and then to Lake Butte des Morts, Lake Winnebago, the Lower Fox River, and eventually into Lake Michigan.

The Pathway Team next examined the topography of the area to see what barrier the slope of the land itself might offer to the spread of ANS between the basins. Representative surface elevations are shown in Figure 5, which also depicts representative cross-sections through the area of interest, based on the best available Geographic Information System (GIS) data, with the

FEMA one percent floodplains shaded in gray. Figure 5 shows a profile along the HUC boundary to depict the 'saddle point' along the basin divide and a cross-section that cuts through the HUC boundary to depict the typical ground elevation along the potential flow path. This saddle point is the location of the basin divide and the point at which a hydrologic connection is most likely to be established. Even so, there is uncertainty that a pathway would be established here because these cross-sections do not depict any channel(s) or other low elevation conveyances for water that may occur at this location. These cross-sections show general ground elevations only and their vertical accuracy is limited.

For this pathway, the elevations in Figure 5 are based on the USGS 10 m Digital Elevation Model (DEM) with a vertical accuracy of +/- 13.123 feet (4 m). This level of accuracy may lead one to conclude that there is a high degree of uncertainty regarding the potential for watershed connections being established during flood events. However, the absolute vertical accuracy (specific elevation) is not nearly as important as the relative, or point-to-point, vertical accuracy (terrain) when evaluating terrain at the divide location to try and predict hydrology. Point-to-point accuracy has been shown to be much greater than this margin of error regarding absolute elevation. Although the absolute elevation values may differ from the true value (i.e., 800 feet (244 m) above sea level), they tend to vary a comparable amount at adjacent points so that the terrain of the area is actually depicted relatively well. The grid size used to create the DEM can also affect the accuracy of the DEM. The larger the grid cell size (10 m squares vs. 30 m squares), the more blocky and less detailed the terrain appears and thus the less accurately the DEM depicts the actual terrain. The largest grid size used at any of the pathway locations is 10 m squares with some areas having more detailed information. Even though the 10 m cell size does not depict every hummock or hollow in the terrain, it does provide sufficient detail regarding general terrain and relative elevations to provide useful data in evaluating the potential for a hydrologic connection forming across the basin divide.

The cross section through the basin divide (lower left graph in Figure 5) does indicate the potential for a predominant flow from the Great Lakes Basin toward

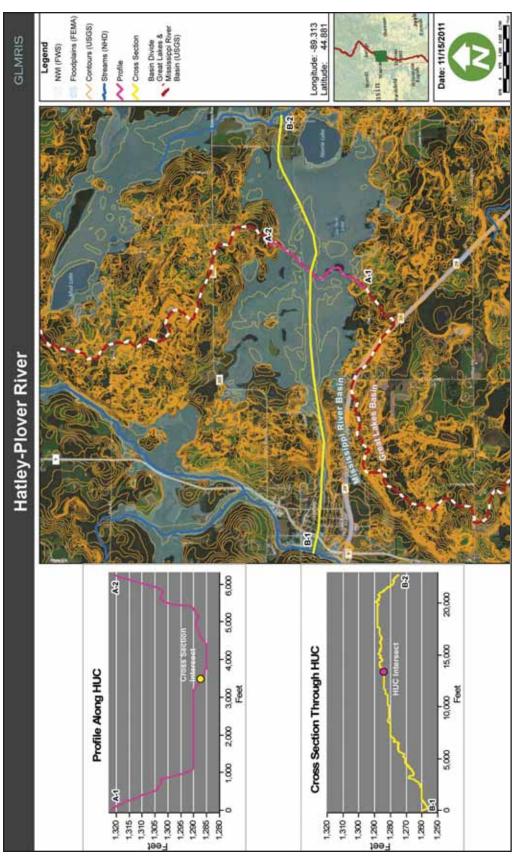


Figure 5: Location of basin divide profile and cross-section, based on USGS 10m DEM with a vertical accuracy of +/- 13.123feet (4 m). The pink line in the aerial photograph and the graph on the top left is the cross section along the basin divide and associated profile. The yellow line that intersects the pink line in the photograph and the graph on the bottom left is the cross section through the basin divide. The blue lines in the photograph indicate closest connecting streams to the basin divide. The gray shaded areas are the FEMA one percent floodplain. Background imagery courtesy of Bing Maps.

the Mississippi River Basin, with a vertical elevation change across the flood-prone area of approximately ten feet (3 m). During a site visit on June 7, 2011, water was observed flowing westward along the Mountain-Bay State Trail up to the bridge at 44°53'4.64"N, 89°19'21.80"W (Bridge No. 1 in Figure 4). A second bridge at 44°53'7.26"N, 89°18'39.42"W (Bridge no. 2 in Figure 4) had a small amount of water beneath it, but no discernible flow. Figure 6 is a picture of the meadow that is typical of the environment surrounding the railroad grade that any ANS would have to navigate through during a potential flood event in order to cross the basin divide, should they even get this close.

There is also a bridge or boardwalk, whose eastern end is shown in Figure 7 that traverses part of the wetland and is shown as Bridge No. 3 on Figure 4. No flow was observed in the swamp at this location.

Based on the site visit and the available information, the pathway team concluded that a surface water connection may form between the basins during a storm event larger than the one percent annual frequency return storm. However, any storm and associated flooding events of greater frequency than this (e.g., ten percent recurrence interval storm) would be unlikely to form an aquatic connection between the basins as no channel or clear flow path was found that could be utilized by lesser flow amounts. However, there is a degree of uncertainty with this in that there is no site-specific data available that would allow precipitation amounts to be correlated to surface flow behavior.

3.4 Groundwater

Groundwater was investigated as part of determining the likelihood a pathway exists because groundwater can serve as a source of baseflow for streams. Water levels in the aquifers typically fluctuate in response to seasonal variations; this is known as recharge and discharge. Groundwater levels commonly rise in Spring, when areal recharge is greatest because of snowmelt, spring rain, and minimal evapotranspiration losses. This means that heavier rainfall events, when they coincide with frozen ground conditions, snowmelt, and higher groundwater conditions, may be more likely to

facilitate formation of an aquatic connection between the basins. Groundwater levels generally decline in summer because evapotranspiration rates are high, continued discharge to streams, and withdrawals by wells collectively exceed recharge. Thus, groundwater likely plays very little role in any establishment of an aquatic connection. Net recharge to the aquifers also occurs in the Fall of most years, due to rainfall and low evapotranspiration rates. The nearest available groundwater data, USGS Groundwater Watch site 444829089161301, is six miles (9.6 km) southeast of the pathway site. Although no groundwater data in the immediate vicinity of the pathway is available, groundwater conditions are not believed to increase the likelihood of creating or maintaining a surface water connection between these watersheds.

3.5 Aquatic Pathway Temporal Characteristics

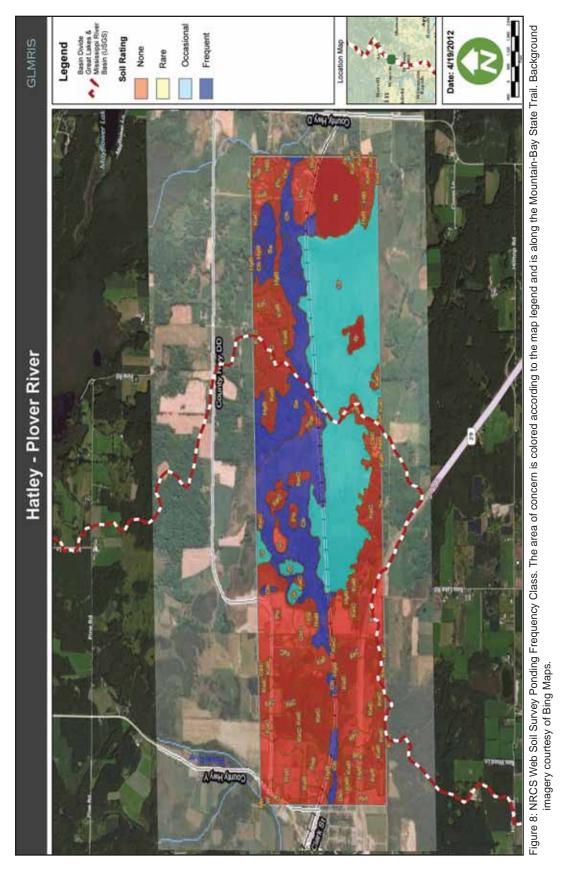

Characterizing the temporal variability of the site's hydrology is potentially an important aspect of understanding the likelihood of an ANS being able to traverse the basin divide as certain flood events may coincide with species movement, reproductive patterns, and abilities to survive and establish populations in various areas. The area of the Hatley-Plover potential pathway site has been identified by FEMA to be within the one percent annual frequency storm flood zone; no site specific base flood elevations have been determined. The NRCS Web Soil Survey (WSS) indicates large expanses of soils in the pathway area that may be frequently flooded during April and May (blue and purple shaded areas in Figure 8). However, the pathway through these soils is interrupted at the western end by soils that have a ponding frequency class of "None" (red shaded areas in Figure 8). This agrees generally with observations in the field that more significant flows than the one percent storm event would be needed to create the potential for a connection at this location. Ponding frequency indicates how often soils are subjected to standing water, therefore a "None" indicates an area that is rarely inundated. No other information was found regarding the temporal characteristics for this aquatic pathway. However, considering the rainfall, depth to

Figure 6: Typical view of meadow on south side of railroad grade near Mountain-Bay State Trail. Photo by USACE.

Figure 7: View of eastern end of the one quarter-mile (400 m) long bridge through swamp (aka, Bridge No. 3). Photo by USACE.

Hatley-Plover Report May, 2013

groundwater conditions, topographic features, and surface water features identified during the site visit, it is likely that only an extreme storm event, in excess of the one percent recurrence interval, could possibly cause a surface water connection between the two basins. In addition, given that the area is subjected to freezing temperatures on an annual basis (Table 2) for four to five months, biological activity and water flow would be further restricted on a temporal basis since the water would be frozen and biological activity of ANS would likely be dormant.

3.6 Probabil ity Aquatic Pathway Exists

The rating discussed in this section is only for the likelihood of an aquatic connection existing at this potential pathway (P_0) up to a one percent annual recurrence interval storm. The low probability rating assigned to the existence of an aquatic pathway at this site does provide a high level of confidence that ANS will not be able to use this site to traverse between the basins. A surface water connection between the Great Lakes and Mississippi River Basins is unlikely based on these four key points:

- During a June 2011 site visit, no continuous aquatic pathway, or evidence thereof (e.g., defined channel, drift patterns, water marks) was observed at the basin divide.
- FEMA Base Flood Maps show a connection between the basins at the one percent annual recurrence interval storm. However, NRCS soil flood frequency mapping shows that soils on the western end of the pathway do not likely experience any flooding except in isolated locations.
- Average rainfall levels are low to moderate, so even relatively rare storm events are not likely to produce enough rainfall to provide a surface water connection.
- Groundwater levels do not appear to contribute to headwater flow in the streams or baseflow in the wetlands at the area of interest.

Due to the above evidence, it is very unlikely that a surface water connection exists or could form at this location on a perennial or intermittent basis, from a one percent annual recurrence interval storm. Consequently, the probability of the existence of an aquatic pathway (P_0) at Hatley-Plover is rated low in either direction and supports the ratings assigned during the preliminary assessment in 2010 . There are intermittent streams at this location leading into both basins, but a surface water connection would not form between them from less than a one percent annual recurrence interval storm.

This rating is considered "moderately certain" because of the following:

- Accuracy of the vertical elevation of the USGS 10 m DEM for ground surface profiles at the basin divide.
- The FEMA overlays available in Google Earth (1973 USGS Flood-Prone Area map (Hatley Quad) and the "Local Flood Hazard Overlay") show a difference between the boundaries of the one percent annual recurrence interval flood at the basin divide.
- Inability to determine conclusively how much of any aquatic pathway that may form is purely ground water versus surface water.
- The flooding and ponding frequency information from the WSS is just one line of evidence and is based on soil characteristics. Therefore, this information cannot necessarily be taken as a proof of surface water conditions.

4 Overall Aquatic Pathway Viability

As discussed in Section 2.4, at those locations along the basin divide where the first element in Equation 5 (i.e., likelihood that an aquatic pathway exists) was estimated to be low, no further assessment of that location was necessary (Table 3). The low rating of this initial element assures that the overall probability of a viable pathway existing (Equation 5), the overall probability of establishment (Equation 3), and the ANS risk potential (Equation 1), will all be low because of the multiplicative nature of the model. This approach assured a more prudent use of public resources in data collection and assessment by minimizing the collection of unnecessary data, and the conduct of unnecessary analyses.

5 Conclusions

During the site visit in June of 2011, no channels or other evidence of an aquatic connection was observed between the two basins. A review of all available data, as well as collaboration with USGS, NRCS, and WDNR, led the interagency pathway team to conclude that there is little likelihood of a surface water connection existing on a perennial or intermittent basis from up to a one percent annual recurrence interval storm. Thus the probability that an aquatic pathway exists was rated "low" and in turn the overall aquatic pathway viability at Hatley-Plover, WI was rated "low".

Table 3: Summary of individual probability elements and overall pathway viability for ANS spreading between the Mississippi River and Great Lakes Basins at Hatley-Plove, WI location.

	Form 1 P ₀	Form 2 P ₁	Form 3 P _{2a}	Form 4 P _{2b}	Form 5 P _{2C}	P viable pathway
Direction of Movement	Pathway Exists?	ANS Occuring Within Either Basin?	ANS Surviving Transit to Pathway?	ANS Establishing in proximity to Aquatic Pathway?	ANS Spreading Across Aquatic Pathway into New Basin?	ANS/Pathway Viability Rating
MRB ¹ to GLB ²	L (MC ⁴)	NN ³	NN	NN	NN	L
GLB to MRB	L (MC)	NN	NN	NN	NN	L
Overall Pathway Viability for Spread of ANS Between MRB and GLB:						

¹MRB: Mississippi River Basin ²GLB: Great Lakes Basin ³NN – Not Necessary ⁴MC – Moderately Certain

6 References:

- ANSTF. (1996). Generic Nonindigineous Aquatic Organisms Risk Analysis Review Process for Estimating Risk Associated with the Introduction of Nonindigineous Aquatic Organisms and How to Manage for that Risk. Report to the Aquatic Nuisance Species Task Force. Risk Assessment and Management Committee, Aquatic Nuisance Species Task Force.
- USACE. (2010). Great Lakes and Mississippi River Interbasin Study Other Pathways Preliminary Risk Characterization. Great Lakes and Ohio River Division.
- USACE. (2011a). GLMRIS Focus Area 2 Study Plan. Great Lakes and Ohio River Division.
- USACE. (2011b). Non-Native Species of Concern and Dispersal Risk for the Great Lakes and Mississippi River Interbasin Study.
- USGS. (2012). Nonindigenous Aquatic Species (NAS) website http://nas.er.usgs.gov/about/fag.aspx
- WRDA. (2007). Water Resources Development Act of 2007 [Section 3061(d): P.L. 110-114; amends Section 345: P.L. 108-335; 118 Stat. 1352]

Appendix A

Evaluation Forms for the Hatley-Plover Pathway

	Hatley, Marathon County, WI				Г
1. Probability of aquatic pathway existence	vay existence				
Aquatic Pathway Team	Expertise Position title or team role	Rating Flow into GLB	Certainty	Rating Flow into MRB	Certainty
	USACE, Detroit - Hydraulic Engineer	Low	MC	Low	MC
	USACE, St. Paul - Hydraulic Engineer	Low	MC	Low	MC
	Team Ratings Low	Low	MU	Low	MC
1. How do you rate the likelihood of th	. How do you rate the likelihood of the existence of a viable aquatic pathway at the subject location? Assume a viable aquatic pathway is any	location? Ass	ume a viable	aquatic pathy	way is any
location where untreated surface wate	location where untreated surface water flow across the divide is deemed likely to occur and connect headwater streams in both basins from any	connect headw	vater streams	s in both basir	is from any
storm up to the 1% annual return frequency storm.	Jency storm.				

Qualitative Rating	Qualitative I	Rating Category Criteria
High	Perennial str	Perennial streams and wetlands or intermittent stream known/documented to convey significant volumes of water
116111	across the ba	across the basin divide for days to weeks multiple times per year.
	Intermittent	ntermittent stream capable of maintaining a surface water connection to streams on both sides of the basin divide
	continuously	continuously for multiple days from a 10% annual return frequency storm; or, location of wetland spanning basin divide
I I I I I I I I I I I I I I I I I I I	which maint	which maintains significant ponds that are likely to become inter connected and connect with streams on both sides of
	the basin div	the basin divide from a 10% annual return frequency storm.
	Intermittent	ntermittent stream or marsh forming a surface water connection between streams on either side of the basin divide
LOW	from larger t	from larger than a 1.0% annual return frequency storm.
	Symbol	
Very Certain	NC	As certain as I am going to get.
Reasonably Certain	RC	Reasonably certain.
Moderately Certain	MC	More certain than not.
Reasonably Uncertain	RU	Reasonably uncertain
Very Uncertain	NN	A guess

under the former railroad grade at a bridge (44°53'4.64"N, 89°19'21.80"W), flowing to the Southwest (towards the Mississippi). A third of a mile to Remarks: During the site visit on 7-Jun-2011, some flow was observed in the drainage ditch South of Kirkwood St. Water was also observed fowing the East, only occassional ponded water was observed along the sides of the railroad grade. There is a 1/4 mile-long bridge through a swamp with its Western terminus at (44°537.26"N, 89°18'39.42"W). No flow was observed in the swamp and the water appeared very tannic. Additionally, the FEMA maps for this area with an effective date of 2010 are based solely on the 1973 USGS Flood-Prone Areas Map (Hatley Quad) and no modeling has been done to update this information. This is unlikely to be a site with a significant risk of aquatic ANS transer.